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The method of integral equations has been successfully applied

to the boundary problems requiring the determination of poten-

tials, Vs{p) and \(p) satisfying the boundary relations^ —

i^&>-'-£V)]-KS<'-»-£<->]='("
respectively, whether the potentials are ordinary2 corresponding to

Laplace's equation, or " generalised " corresponding to the equa-

tion

—

(•2) v-'U-FU =
The latter potential I have considered in a paper^ recently com-

municated to the Quartei-ly Journal. It is shewn that solutions to

the problems can be uniijuely determined, except for certain singu-

lar values of the parameter, in the form of potentials of double and

simple strata respectively, given by'*

—

(3) i
W{r>)^/i{t)n{tp)dt

\ Y{'p)=/(A{pt)t{t)dt.

At a singular i^a'-ivnietei' value A,,, however, the solutions become

intinite, since each of thy functions ii(fp) and (^{pt) has a simple

pole, unless certain conditions are satished. It will be sliewn that

the parts H{tp) and (T{pt) of these functions remaining finite at the

pole Ay, form tlie corresponding functions for the solutions at this

pole of the problems (1), which, however, must be modified"' in their

second members. The residues P(^//) and <.}(pf) of B.{t p) and G:{pt)

respectively, also play an important part in the following argu-

ment.

1 Poineare. " Sur les Equations fie la Physique." Rendicoiiti, Paleinio, ISiU.

2 Plemelj. Moiiatsfefte \\\v Math, umi Physik, Bd. 1.5, .S. ;«7-4U (1!»U4): Brt. 18, 8. 180-211

(1907).

3 " Boundary ]irol)leiiis for tlic <;eiK'iaHsed potential coiiesponfliny to tlie equation

V2u-A;-U = 0." Quarterly Journal, vol. 4G, \^\^. «(J-S2.

4 The integ-ration throujrhout is e.xtended over the boundary of tlie resiou considered, uidess

otherwise stated. The notation of my previous payier is adhered to.

5 Weatherburn, loc. eit. § ; also Plemelj, loc. cit., S. iO\-U.
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Pleiuelj's work' is (.(HitiiitMl to the ordinary potential and deals

chiefly with the pole \=+l. The present paper extends the in-

vestigation to the generalised potential, and also to the general

pole Ao. For this charaeteristic number, which may be any what-

ever, more general relations are established connecting the resi-

dues and the functions H{tj)) and G(pq), which correspond to the

modified problems. The boundary discontinuities of these func-

tions and their derivatives are investigated, and also certain

theorems of reciprocity. Expansions for the various functions are

found as power series in the parameter A.

In the tirst part of the paper the investigation applies to the

ordinary and generalised potentials alike. In the second part

the ordinary potential is considered separately, and results pecu-

liar to Laplace's equation are obtained which depend either upon

the fact that A=±l are here characteristic numbers, or upon the

special value of the integral of h(tp) extended ovei- the boundary.

Values for the boundary integrals of the different functions are

investigated. Further from the convergence of the above expan-

sions when |Al = l a value is deduced for the conductoi' potential.

It will also be shoAvn that the solutions of thti second boundary

problem for the inner and outer regions ai'e expressible in terms

of a single function.

Finally the case of the generalised potential is considered

separately. The value is found of the integral of Ii(tp) extended

over the boundary, in terms of the potential of a space distribu-

tion of matter. Further relations are found connecting the boun-

dary integrals of the other functions involved.

I.

—

Ordindry and (jeneralised poientials.

^1. Solntions and flieir p(dex. The solutions of the boundary

problems as given by (o), when expressed in terms of the resolvent

H(^s) become^

—

(3') \ W(p) ^fi{l)[k{fp) + \rR{te)h{(Jp)d6]df.

'. V(p)=/[gU>t) + \/\j{p6)K{et)dd]Uf)df

where

h{ep)=fy{ep)

6 being a point on the boundary, and {/ (p>/) is a particular solu-

tion of Laplace's ecjuation if the potential is ordinary, and of the

equation (2) if it is genei'alised. The value of this function is

given by

—

1 Cf. also " PotentialUieoreti&che Untersuchunfjen," Teubner, Leipzig (1911).

2 Cf. Weatherbuin. Loc. cit. § 2.
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'
' V yiP'j) = log ^01' t-lie logarithmic potential

y{p'l) = ^' ^or the Newtonian potential

which are solutions of Laplace's equation; and

^^'^
I il(.P<]) ^ -/U''-) fo>" tlie plane

( !?(y"7) = -
•«"*'/* ^O'' •'^P^c^

when the potential is generalised correspduding to the equation

(2). In this /• is the radius vector joining the i)(>ints /; and q,

and f{z) has the same meaning as in my paper already referi-ed

to. The functions H(</j) and G(^0 '^'^'^ equal to tlie correspond-

ing expressions of (3') in st|uare brackets. The foiiuer is an ex-

tension of the solving function in which any ])oint y rejilaces the

boundary point .*;. The latter may be defined more generally for

any two points pq by

—

G(m) = 'An) + Vi/(p^)H(%)f^«

This function is the Green's functicni^ for the lioundary problems

(1). It will be seen that H(#/;) can be expressed in terms of it by

normal differentiation, so that both solutions (•)) can be given

in terms of it by a representation of Green's type. It is easily

verified that

j'g{qt)VL{tp)dt = /'G {q()h{tp)dt

.so that the equations defining and connecting these tinutions aie

—

(5) j liitp) - hilp) = XJ'h{l6)\l{ep)dd=\i H{/0)h{dp)d&

\ G{qp)~g{qp)^\/cj{qd}K{dp)d6 = k/\;(qO)h{6p)d6

Now when X. is ecjual to a characteristic number (singular value)

Ao, each of the functions 'il{tp) and G{qp) has a simple pole."^ The

solutions expressed by (3) are therefore infinite, and cease to have

.a meaning. Since the pole is simple we mav write

—

where IHjp) and <'(/j[') are functions of A, which depend on A,,

and remain tinite when A—A,, ; the residues !'(//>) and A„ Qiqp)

-do not involve A but depend on A„. It iiow v.e siiiistitute from

.(6) in (5), multiply l)y (Ay-A) and pr<icecd to the limit A=A,„

we obtain tlie following relations :

—

(7) ( ¥{tp) = \jTite)h{0p)de = Xj7,{tt^)V{Up)dO

) Q(qp)=/y{q6)'P{dp)de = XJ-q(q(J)hidp)de

1 Of. VVeatheibuni. "Green's Functions for the equntioii A "-^ (/-/.-'.!(( =0, etc." (^Hiarterly

Journal, vol. 4G. The remaining references are to my earlier paper.

•2 Weatherburii. Loc. cit. § 3.
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If again we substitute from (6) in (5) and use tlio i-elations (7)

we find

—

^^^
J

xfh{td)H{ep}d6=x/ii{te)h{ep)do=ii{tp)-.h{tp) + ~ .p(^;>)

I \fg{qd)H{dp)d e= \rG{qe) h{dp)d 6= G{qp) - cj{qp) V Q.{qp)

These relations are more general than those found for the ordinary

potential by Plemelj, who considers mainly the pole A= +1. They

play an important part in our argument.

The value of 'P{ts) is known, being the residue of tlie resolvent

for the simple pole Xq- I^ '" ^^^ the order of multiplicity of the

root Ao of the determinant D{/\), P(^s) may be expressed as the

sum

(9) P{te) = <^,(0<Al(«) + Ut)Hs) + • . • + <t>m{t)^m{s)

where the functions ^i, i//i(i=:l, 2, . . . . m) are the m linearly

independent solutions of the homogeneous integral equations.

<ji{t)=Xo/h{te)<f>{e)de

x(f{t) = ko/^{0)h{dt)de

satisfying the usual orthogonal relations. Hence the values of P{tp)

.and Q,{qp) are given by

(9') j -P{tp) =cfy,{t)4,,{p)+ +<f>mmm{p)
\ Q{qp) = ^i{q)hip)+ +^m{?)MP)

where ^(q) is the potential of a simple stratum of density (j>{t) over the

boundary, and i/^Qj) is that of a double stratum of moment Xa^(t).

If we introduce the functions

^^^) jk{tp) = h{tp)-\-P{tp)

we are enabled to express (8) in a form exactly similar to (5). For

if in the first of (8) we replace p by 0, multiply throughout by

V(Op) and integrate over the boundary, we find in virtue of (T)

that

/H(te)V{ep)dd =/F{td)H{Op)de = o.

Similarly it may be proved that

J G{qd)V{dp)dd =/Q{qe)H{ep)d6 = 0.

These integrals may therefore be combined with the integrals in (8)

without altering their values, so that the relations may be

Avritten

(11) ( \j'k{tO)H{ep)de = xf H{td)k{ep)dd = H(tp) - k{tp)

1 Xfl{qB)H{ep)dd = \fG{qd)k{ep)de^G{qp)-l{qp)

which are of the same form as (5); but G^qj)), as will be seen, is

the Green's function for the modified problems, and H {tp) bears

the same relation to it that H(#j5) bears to G(5'jp).

3a
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^2.

—

Bouiuhtnj discqut inuifitx. —The second of equations (9)
shows that Q {qj)). regarded as a function of r/, is the potential

of a simple stratum of density ^(Op). From the boundary pro-

perties of such it follows that

Adding and subtracting we find for the normal derivative of

Q{qp) on either side of the boundary

1ao|q(^» = (1-A,)P(^^.)

Regarded, however, as a fuiictiou of p, Q (qp) is a double stratum

potential of moment X^Qi?^)- Henco

)

i[Q(^^+)-Q(g<-)] = A„Q(<?0

» lSQ{qt-) + Q{qi+)] = xjQ{qe)h{et)dd=q(qt)

Adding and subtracting we have for the values of Q (qp) on either

side of the boundary

(13) jQ{qt + ):={i+K)Q{qt)

\ Q{qt-) = {l-K)Q{^f)

Similarly P (sp) as a function of p is a double stratum of

moment X(,^{sO) ; and its values on either side of the boundary are-

found in the same way to be

(14) I F{st+) = {]+X,)-P{st)

\-p{.sf.-) = {\-X,)P{sl)

From the second of equations (10) G(qp), regarded as a function

of ^ is the sum of potentials g(qp), —Q,{qp), and a simple stratum

of density Xff(Op). From the behaviour of tliese at the boundary,

and in virtue ..f (12), it follows

ir^,a^f~p)+ lG(t^p)'] = X/HW)H{Op)dO + /,{tp)-T{tp)/X,
Lan ail J

^H{tp)

Addiiiir and sul)sti-actin<'- we find

(15)

\^!^ {t~r) = {\+x)iJ{tp)-V(fp)

^a{f+p) = {l-X)H(tp) + F{tp)
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Regarded, however, as a function of p, G(qp) is a double stratum

potential of moment XG{gB), together with potentials g{qp) and
—Q(gp). From the boundary properties of these we deduce

(16) ^G{gt + )={1 + \)G{gt) - XMi^t)

lG{qt
) = {l-\)G{qt)+XMqt)

Finally H{sp) regarded as a function of p is the sum of potentials

h{sp), —'P(sp)IXg, and a double stratum of moment X/I(s$). From

which it follows, in virtue of (14) that

(17)
I

H{st + ) = ( 1 + X)II{ St) - V{st)

il{{st-) = ( 1 -X)II(.st) + P{st)

§3.

—

Solution regular at a singular parameter value. —We are

now in a position to find solutions to the boundary problems (1),

with second members modified, having no singularities for the

characteristic number X^. If we define the functions W{p) and

V{p) Ijy

(18) ^w{p)=/i{d)H{ep)de

lv{p)=fG{pd)i{e)de

we find on suljstituting the values of H{Op) from (8) that W{p) is

the sum of potentials of double strata of moments f(;;), -/"f (^)P^0^^5

and X/'i{6)JI{6t)d6 respectively.

Hence we find that

h[W{t+) - ir(^-)] -u[ir(^+)+ w{t^)]

= i(t) -/i{e}F{et)dd + xfi {6)H{et) do

- xf{ f {(f>)h{(f>t) -ft {d)F(e(f>)h{cf>t)de + xfi{e)H{0(fi)h{(jit)de]dcf>

In virtue of (8) the second member disappears except for the first

two terms. So that W(p) satisfies the boundary condition.

(19a) i,[Wit+)- n'{t-)] - hx[ W{t+) + w{t-)]=f{t) -fi(e)F{dt)dd

In this all the function.s are regular when A=/\„ ; so that

this equation admits the solution W{p) which is regular even

when X is put e(|ual to the singular value A^. It has been shown

elsewhere^ tliat for this value of the parameter tlie first problem (1)

does not admit a solution by double stratum unless the condition

/f(^)P(^0^^ =

is satisfied, in whicli case the solution is obviously TI (/?).

Similarly substituting the value of G{pd) given by (8) we find

that V{p) is the sum of potentials of simple sti'ata of densities i{t),

-j"P{te)i{e)d6 and X/H(te)i (0)dO. From the boundary pro-

perties of simple strata it follows that

= i{t) -f P{td)i{e)de-\-xfH{te) f {e)de

- xf/i{tcf>) [f (<^) -/'P{ci>e)t(6)dd+x/Ji(<fiO)i{0)dO]d<f>

1 Weathevburn. " Boundary Problems, etc," J (J.
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In virtue of (7) and (8) the second member reduces to the first two-

terms; so tliat V(p) satisfies the boundary problem.

All the functions involved are regular for the singular value X = Ao,

so that F(/j) is the solution of the problem (19b) regular even when

X is equal to this singular value. The problem (lb) does not

admit a solution by simple stratum only, Avhen X=Ap, unless the

condition
/F{te)i{e)d$=:0

is satisfied, in which case the required solution is obviously V(p),

Tlie problems (19), derived from (1) by altering the second member,

we shall speak of as the modified problem for the singular value Ao-

The functions H(t-p) and G{2)t) bear the same relation to the solution

of the modified problems that 'H.(fp) and G{pf) bear to the original

problems (1).

iil.

—

Expansions. —From the formulae (8) and (18) we may ob-

tain, by the method of successive approximations, expansions for

the various functions in ascending powers of X. These are cer-

tainly true for
|

X
|

< 1, and in particular cases even for jXl^l.

For the present we shall assume that the absolute value of X is less

than unity.

Thus from (8) in virute of (7) we find

(20) [H{ts)=^[]i{ts) - IP(^«)] +x[a,(<s) - \-;P{ts)]

G{ps)=[g{ps) -q{ps)-\ + x]^l,{ps)- ^
q{ps)\

+ >^'[0.{ps) -\.^{Vs]+ ••••

where the suflixes denote functions formed by successive operations

h,{ts) = /h{t6)h{es)de,

h.lts)=/K{te)h{es)dd, etc.

and
g,{ps)=/c,(j^e)h{e.)d6,

r,.Xps)=/g,{p$)Hes)de, etc.

If Ave extend the notation and repbue •>-• by any point p we may

write
h^(t/>)=/ h(te)h(ep)d6,

h,,{fp)=/hn^,{fe)/i{ep)de, etc.
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and the tirst c(|uati()n ("iO) becomes

("^')
|^(^y;)=.[/K//>)-|T(<;.)]+A[A,(/;>)-lp(/p)]+ ...

Introducinp' these values in (18) we have, for the solutions of the

boundary problems (li))

(21)

I

w{p)=/no){[h{ep)^lF{ep)'] +x[a,(^p)-1p(p^)] + .. }d^.

) np)==/{[y{j>0)-Q{pe)] + x[g,ip6)-lQ{j>0)'^ +..]HO)dO.

We may further obtain expansions for the moment i'(/,), and the

density [ji{t) of the strata satisfying (19); for these are solutions of

the integral equations

( v{t) - Xfv{6)h{$t)de=i{t) -/i{0)F(Ot)dO=^{t), say

I ix{t) - X/h{tO)fjL(d)dd=i{t) -/P{tO) iiO)dd = F{t), say,

and are therefore given by the expansions

(22) I
v(0=E(0+AEi(0 + A%(0+ ....

) fM{i)=F{t)+\F,'{t)+X,F,'{t)+ ....

where the successive functions are given by

E,{t)=/F40)h(ef)dH

E.,(t)=rE,{6)h{6t.)d6, &c.

and
¥,'(()=/ h{te)F{6)de

F.J{f)=/h{td)Fi'{0)de, &c.

If we evaluate these functions we find

Ea{t)=/l(e)h„,_-^(6t)dO-\/i{0)F{ef.)dO

Fn'(0 =J'K- imi {0)de - ^/P{fO) HO)dB

If now we form double and simple strata with moment and density

given by (22) we find exactly the series (21) over again.

§5.

—

Forimd(E of Reciprocity. —The Green's function G(p5)

admits certain theorems of reciprocity. The argument used to

establish these for the ordinary potential^ is equally valid for the

generalised, the symbols having their altered significance. These

relations may be stated

i. If the points p and q are both in the same region or both on

the Ixiuiidary

(23) G(/^) = C(y/)

1. Pleraelj. F.oc. fit., S. 39fi-3i)8.
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ii. If p is a point of the iuiier region, </ of the outer, and t a

point on the boundary.

(24) (1+A)G(;.^)=(1-X)G(^/.)

G(tp) = {l-\-X)G{pt)

G{t^)={l-k)Q{^t)

From (23) and (6) we deduce immediately that if p and q are

both in the same region, or both on the boundary,

(25) ( Q{p^) = QU/p)

If, however, p and ^ are in the inner and outer regions respectively,

we find on substituting from (G) in the first of (24), multiplying by

Aq—A and putting A=:Ao

(26) ^{\+X,)Q(p^) = {l-X,)q{^p)

I

(1+a)6'(m)=(1 -^)G(^p)+j^^-Q(n')

Similarly from the second and third of (24) we find

(27) (
Q{tp) = (l+X,)Q(pf,)

I Q(^.;)==(l-A„)Q(./0

and thence

(28) S
0{fp) = {\ +X)G(pt)-X,q(pt)

( G{t^) = {l-k)G{^/t)+X,Q{^/t)

II.

—

The ordinary pofeiti led.

§6.

—

Integral Relatione. —The preceding properties are common
to ordinary and generalised potentials. We know, however, that

while the values A:= + l, Avhich correspond to the problems for the

inner and outer regions separately, may both be characteristic

numbers for the ordinary potential, they are nofl singiilar for the

generalised. The properties arising from the existence of these

poles are then peculiar to the ordinary potential. Other special

relations arise from the fact that foi' this potential the function

h(tp) satisfies ihe integral relation2

(29) /h{tp)dt=2, 1, or

according as p is within the closed surface, on the l)oundary or

outside, and the integration is extended over the boundary. W©
shall find furthci- on a cori-esponding formula for the generalised

potential from which tliis may be deduced by putting A;=0.

Let us suppose that tiie boundary consists of m independent

surfaces each possessing at every ])oint a definite tangent plane

and two definite principal radii of curvature. The value A=l

1. Weatherburu. Loc. cit., § 3.

2. I'lemelj. Noc. cit., S. ^41-4. Another proof is 1).\ (Jrecn's TheoriMii as in S i) of this pujier.
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is always sinj^ular. We shall assume that the surfaces are all

exterior to one another, so that X. = —1 is not a characteristic

number. The functions P(^s) and Q{ts) assume simple values at the

pole Ao=l. For the functions i/'i(«), ^i{s), • . • , >/'/«(*) are such that

i/',.(,s-) is equaP to + 1 over the rth surface and zero over all the

other surfaces; while 4)r{t) is a distribution of electricity over

the surfaces giving constant values over each of the surfaces

and rli)-oughout each of the vi inner regions. This distribution

<f)r(/) has a total charge +1 over the rth surface, and zero over

each of tIic otlieis. It tliere-fore represents the electric distribution

over the ;/( surfaces regarded as conductors, due to unit charge on

the rth sui-face. Hence, if we use an index to denote the particular

value of the pole A..,.

F+^{ts) = (f>y{t) rr^l, 2, .... Ill

according as .»>• is on the 1st. 2nd, wth surface. Fui'ther, the func-

tion if/r(p), being ecpial to the potential of a double stratum of unit

moment over the rth sui'face. is given bv

(30) if,,{/>)=jli{tp)</t = '2, 1, or

according as /> is within the rth surface, on its boundary, or out-

side that surface. The jjotential <I>r(^) due to the distribution

<f>r(^) is the conductor jxitential refei'red to. We shall denote it by

rr(^). So tliat

(31) i
F + Uj.p) = 2cl>,{f), ^At), or

) Q+ \>/p) = 2Vr{(j), VrW), or

according as p is witiiin the rth surface, on its boundary, or in the

outer region. This of course is a particular case of (13) and (14).

Wemay prove several interesting properties of the functions in-

volved in (5), (7) and (8), making use of the relation (29). If in

the first of (7) we replace p by a boundary point «, multiply by dt

and integrate over the boundary we find

/P(fs)dt = XjP{Os)dO

Hence

(32) /P(ts)dt=0 Ao±l.

By the .same process we deduce from (5) thaf^

(33) {l~\)/H(ts)dt=\

Substituting from (6) and putting Ay = 1 we have

(33') (1 -\)/ H+\ts)dt + jP + \ts)dt=l

1. Plemelj. Loc. cit., Kap. 16.

* In (32) X may be replaced by a i)oiiit p. The same may be done in (33) and (34') provided the

second member be changed to 2 for p in the inner reyion, and to for p in the outer region. Cf. § 10.
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This is an identity in A, and P+^(<s) does not contain X. We may
therefore put X—1 giving

/P+Hts)dt=l

which may also be deduced from (31) in virtue of the properties of

the distribution <^r(0- This last relation combined with (33')

shows that

(34) /H+Hts)d(=0

while from (32) and (33) it follows that

(34') {1-Xyil[ts)dt = l A,±l.

This may also be proved from the first of (8), multiplying by df

and integrating over the boundary.

^7.

—

Expansions. —The second member of the equation (19a)

assumes, when X,, =1. the form

E(0 = f (0 -./£ {0)<l>riO)de = f (0 - Gr

r= I, 2, . . . . , m
according as f is on the 1st, 2nd . . . ?»th surface.

The series (22a) now becomes, by (29)

(35) v{t) = [i{t)-Gr] + X[f,{t)-Gr]+X\Ut)-Cr]+ ....

and since v(^) noAv possesses no pole at X= +1, while X= —1 is not

a singular value, this series is convergent for |Aj = l. The terms

therefore decrciise indefinitely, and we have for the constant Or

the value!

n= cc

=Lt j'i{6)hn{et)de
n=cc

whei-e f is on tlie rth surface. The constant C,- assumes m different

constant values, one on eacli of the surfaces.

In (35) we may put A= + 1 and tluis obtain tlie moments of the

strata, which satisfy i-espectively the boundary problems.

W(<-)=-[f(0-C,]
W{t+)=i{t)-Or

The singular value A —I also corresponds to the second problem

for the inner region. The second member of (19b) for this pole

takes the form

V{t)=i{t)-/'P{te)i{e)d6

^i{f)-MnfHO)dO = i(t)

provided the usual condition for the inner region, viz.,

/i{e)dO =
be satisfied. The function /u(^) represented by (22b) now becomes

(36) fL{t) = i{t) + Xi,'{t)-i-X\'{t)+

1 Cf. Plemelj. Potentialtheorctische lliitersuch\iiigeii, S. 60.
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It lias no piilf at /\= +1, while \= —1 is not a singular value.

The series is therefore convergent for |A.1=1- In (36) we may put

\=±1 and thus obtain the densities of the simple strata which

satisfy respectively the boundary problems

da

The series for the solutions (21) may be obtained from that equa-

tion by substituting the values of PC'^p) and Q(pO). Further, if

Ao=I, the functions II+^{ts) and Cr-^^{ps) given by (20) have no
pole at \=1, while \=i —1 is not a singular value. The series are

therefore convergent for jA| = l, so that the terms decrease indefi-

nitely. It follows that

giving the electric distribution^. <j>r{t) in terms of the iterated

functions hn(ts) : the limit assuming one of m different values,

according to the surface upon which -'j lies: Similarly fiom the

convergence of the second series (20) for lA|=l, it follows that

II = »
i.e.

(37) V,.{t)=U g,,{ts)

'll = CC

giving the conductor potential Vr(fj as the limit of the sequence

gi{ts), g^i^-'^)-
which assumes m different values according to

the surface on which s lies.

§8.

—

Solution of fhe second hnundary problem for both inner

and outer regions in terms of (t single function. —In the second

boundary proljlem the values A=±l correspond to the inner and

outer regions respectively. The former of these values is the only

pole involved. The boundary problem (19b) becomes, for Ao=U
and A=±l equivalent to the sepai-ate problems represented by

^ ' ^ ^(t+)=~i(t) for A=+l
dn

'^^{r)=HO for A=:-l

where in the former the boundary function i{t) is subject to the

usual integral condition. The solutions to the problems given by

(18) may be written

(39) r(p)=/Gll(pO)i(e)dO
and

v{p}=/vtl(pe)t(e)de

1 Cf. Potentialtheoretische Untersuchuiiuen S. 5S>.
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respectively, where the index represents the pole Xq= + 1 and the

suffix the particular value of A. As noAv the pole Xo= + 1 is the

•only one to be considered we may drop the index in what follows.

These two solutions are expressed in terms of different functions

<T + \{ps) and G^iips). It is our object to express both of these in

terms of a single function. By means of the second equation (8)

w^e may write

(40) ( G^,{ps)^/G^,{pe)h{6s)d6=g{j^s)-T{r)

» G-,{vs)+/G^,{pe)h{e.^)de^g{ps) - v{p)

If we put

{1B{ps) = G^r{ps) + G i(;«)

\ 2R,{ps) = G^,{ps)-G ^,{ps)

we obtain from the preceding by adding and subtracting

(41

)

( R{ps)-fR,Xpe)h{es)de=g{ps) - Tip)

' Ri{p^^)-/R{pO)h{0s)de=O

This last equation expresses B^ps) in terms of B(ps}; hence we

may determine both G+ i(ps)iind G-.\{p^) in terms of the single

function S(ps). From (41) we find rliat F{p.<i) satisfies the integral

equation
B(ps) -/R(pe)h,{Os)dd=<j(ps) - T{p).

As in §4, by the method of successive approximations, this integral

•equation gives us an expansion for R{ps) and hence for R^(ps). We
find

( R{ps) = lffip.)-V{p)] + \!UP'^)-r{p)] + [ff,{ps)-T(p}]+ . .

\ Ii,{P^^)=[y,{px)-V{p)]-\-[g.,lps)-T(p)]+ . . .

Avhich are both convergent, being identical with tliose obtained by

adding and subtracting the absolutely convergent sei'ies for G+ i{ps)

«-nd G- lips).

The solutions of the second boundary problem for both the inner

and the outer regions could also be expressed in terms of the

function K(ts) introduced by Plemelj.i For from (8) we find

G+ \ps) - \l\j{pe)U^^ds)d6=z<i{ps)-T{p)

In this we may putAr:r±l in turn, and thus obtain G+ iips)

and G-iips) in terms of H+i{ts) and 7/_i(te) respectively, and
hence in terms of li(fn). Introducing the values of tlie functions

we find

G+ i{ps)=y{ps)- Tip) +/;/(]>e)\ K(Os) +/h{6(r)K{crs)dcT\de

= yips)-Tip) +/g(pe)K(ds)d6 +/g,(pO)K{Os)dO
Similarlv

G_,ips)=;,{ps)--Tip) -/(/ip6)Ki0s)d0+/;/,{pe)Ki0s)d6

So that the solutions for both legions may be expressed in terms

of K(ts).

1. Potent. Unter. S. 79.
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III. —The (jeneralised potential.

§9.

—

Fundaweutal formula. —Tlif siiiipk' forms taken bv the in-

tegrals of §6 depend upon tlio fonnidu (2i)), whieh is true only for

the ordinary jjotential. 1 now propose to find the value of the

integral

n,{tp)dt

when the potential is -generalised. corres{)ondin^ to the equation

(2). In Green's formula

put U = l, and \=y[qj)), q being a variable point and y a fixed

point. If in (42) the integration is extended over a closed surface

and }} is outside the surface we find, since r/iqp) satisfies (2)

(43) fh{tp)dt= - }^/<j{qp)dg

where dq is the element of volume at q. The integration in the

second member being extended throughout the volume enclosed by

the surface, the integral represents the potential at p due to a

uniform distribution of mass of unit density throughout that

volume. We shall denote this potential by X(/>).

If, however, p is inside the closed surface we must surround j^ hy

a small sphere Q, of radius ?•, the surface integration of (42) now-

including the surface of this sphere, and the volume integration

extending only throughout the volume between the sphere and the

original surface. At the small sphere the positive direction of the

normal is that of /• increasing, so that (42) becomes

/h{tp)dt + ky{gp)d^=-J^,g(sp)ds=:l/2^Je-'^'{ l+^.jds

il il

and when the radius of the sphere becomes vanishingly small the

second member is equal to 2. Hence when /; is within the closed

surface

(44) fh{tp)dt = -2-ky'g{q2y)dq='2-k^X{p)

the volume integral of the second member being convergentl since-

the subject of integration becomes infinite at p —q only as \ir.

To find the value of fh{ts)dt where s is a point on the boundary

we observe that fh{tp)dt is a double stratum potential of unit

moment over the boundary. Hence its value at a point on the

surface is the mean of its values at points infinitesimally close to-

this, one just inside and the other just outside. So that

(45) fh{ts)dt= 1 -hrfg{gs)dq

= l-A;^X(s)

1 Cf. Leathern. " Volume and surface intejrrals used in Physics," p. H (Canibrid<fe Tract, 19U5)-
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1^10.

—

Further relations. —By means of " the preceding results we

may obtain relations corresponding to those of §6 for the ordinary

potential. From the first equation (7) we find on multiplying by

dt and integrating over the boundary,

/F{tp)dt=Xj[l-Ic'X{6)]F(dp)dO

that is,

(46) (1 -Ao yFitp)dt= -k-'\JX{d)V{dv)dd

which reduces to (•32) when /.-^ is put equal to zero. Similarly from

the first of (8) we find on integration with respect to t

)^/[\-k'X{d)]H(ej7)d$=/B(tp)dt-c-^lc'X{p)

-l/F{tp)dt

-or

(47) {i-xyn{tp)d(=c-k:'X(p)-xkyx(0)iJ(ep)d6

^J^---/x{e)Fi0p)dd
1—Afl

where c has the value 2, 1, or 0, according as p is Avithin the inner

region, on the boundary, or in the outer region. This relation

reduces to (33) when k is zero and p on the boundary.

Tliese might have been derived from (5), the first of wliicli be-

comes on integration

(48) {l-X)/H(f.p)df=c-PX{p)-X/rrX(0)Ji{ep)de

Substituting from (6), multiplying by (A.,, —A) and proceeding to

the limit A=Ao "^^'e arrive at (46). Then substituting from this

in (48) we find (47).

The preceding investigation deals with the singular parameter

values of the first two boundary problems only. In another paper ^

the author considers the third boundary problem for the equation

(2), requiring the determination of a solution satisfying the rela-

tion

^(^+)=A/?(ov(^^)-^(OU(o

The singular parameter values for this problem are there discussed.

1 Weatherburn. "The mixed boiuuiai-y problem for the geiieraUsed potential correspond in;.;-

to the equation y -i m- A:-2it = 0." Qniirterly .Journal, vol. 46, pp. 83-04.


